
The Server-side Architecture
Behind OpenLaszlo Applications

Geert Bevin
gbevin@uwyn.com
http://www.uwyn.com
http://www.rifers.org

Agenda

 What are Rich Internet Applications?

 Why use OpenLaszlo?

 Architecture comparison with regular web MVC

 Designing a multi-purpose RIA server-side solution

 Implications for the client-side

 Making your RIA applications maintainable

 Q&A

Who am I?

 Geert Bevin

 CEO of Uwyn, a small custom application development
company (http://uwyn.com)

 founder of the RIFE Java web application framework
(http://rifers.org)

 official contributor to OpenLaszlo

 creator of Bla-bla List, open-source RIA to-do list
tracker in OpenLaszlo (http://blablalist.com)

What are Rich Internet Applications?

 full-featured web-based interactive GUI applications

 launch without any installation

 run in a secure sandbox to protect the local machine

 information is stored on the server

 the application can be used from anywhere

 platform independent

Examples

Amazon Store
This RIA interpretation of an Amazon music store

demonstrates presenting a range of functionality all in one
window, drag & drop between windows, a dynamic

shopping cart, and more, including pulling live data from
Amazon's back-end database.

http://www.laszlosystems.com/partners/support/demos/

Examples

Bla-bla List
Bla-bla List is a free, secure, simple and sharable to-do list

service. It’s open-source and written to explore the world
of rich internet applications. The first implementation uses

OpenLaszlo, and the plan is to implement the same features
in other RIA technologies

http://www.blablalist.com

Examples

Pandora
Pandora is an intelligent radio station that automatically

suggests the songs that are played according to your
musical preference and taste.

http://www.pandora.com

Why use OpenLaszlo?

 open-source, stable and well-documented

 runtime-independent development platform

 powerful object-oriented component-based language

 extends the RIA focus to multi-media capabilities

 currently targets Flash which has 97% market
penetration

 no browser compatibility hell

Comparison with regular web MVC 1/5

MVC stands for model-view-controller

standard pattern for separating concerns in a data-driven GUI application

User

Controllertriggers an event updates the model

Model

updated view
is displayed updates the view

View

updates the view

Comparison with regular web MVC 2/5
Server-side web MVC puts all the burden on the server with only primitive
interaction possibilities in the client.

 each client interaction makes the server view generate instructions for the
client’s view: the HTML document that the browser interprets.

 the client’s controller doesn’t interact with the server controller directly: the
browser handles input event which are summarized in HTTP requests.

ServerClient

User
Controller Controller

Model

ViewView

Client Server

Model

Controller

View

Controller

View

User

Comparison with regular web MVC 3/5
This architecture has been extended with more intelligent features like
client-side validation, at the expense of adding more complexity.

 the client needs to receive parts of the model to be able to perform the more
interactive functionalities

 the client will contain logic to be able to work with the model parts it received

Model

Client Server

Model

ControllerController

View

User

Model

Comparison with regular web MVC 4/5
Rich Internet Applications are able to handle all view-related functionalities,
which eliminates the need for the server-side view.

 the client has become thick and is able to provide a rich user-interface
experience

 the server contains only the core logic that is driven by the controller, parts of
the model are provided to the client

Comparison with regular web MVC 5/5
Overview of the architectural shift from server-side web MVC towards RIA.

 double view handling
 complete request/response cycle
 limited client functionalities
 heavy burden on server

 single view at the client
 targeted request/response cycle
 rich client functionalities
 thick client and light server load

Client Server

Model

ControllerController

View

User

Model

Server

Model

Controller

View

Client

Controller

View

User

A multi-purpose RIA server-side solution 1/7

 turn the server into an generic API

 provide RESTful web-services

 open up the application for other clients

A multi-purpose RIA server-side solution 2/7

What are RESTful web-services?
• standard HTTP requests with clean URLs and parameters

• use the POST method for modifications

• use the GET method for idempotent actions

• responses are XML representations of the model

A multi-purpose RIA server-side solution 3/7

RESTful web-service POST example
example request to create a new to-do list while being logged in

example XML response

http://blablalist.com/createlist

POST parameters:
authid	

 	

 	

 622c895dec2d96cf127f0d557785d200
submission	

 	

 create
name	

 	

 	

 My new list

<create authid="622c895dec2d96cf127f0d557785d200">
 <success id="37"/>
</create>

A multi-purpose RIA server-side solution 4/7

RESTful web-service GET example
example request to get the info of a to-do list while being logged in

example XML response

http://blablalist.com/getlist?
 authid=622c895dec2d96cf127f0d557785d200&
 id=23

<list authid="622c895dec2d96cf127f0d557785d200"
 id="23" name="Things I need to do this weekend" shortname="this_weekend"
 public="true" listurl="http://blablalist.com/list/johnsmith/this_weekend"
 feedurl="http://blablalist.com/feed/johnsmith/this_weekend"
 printurl="http://blablalist.com/printablelist?id=23"
 privateshares="1"
 count="2" isowner="true">
 <description>It's really time that I finally get all this done!</description>

 <entry id="140" name="Fix the electricity" done="false" priority="0"/>
 <entry id="141" name="Put in the new lightbulbs" done="false" priority="1"/>
 <entry id="142" name="Wash the car" done="true" priority="2"/>
</list>

A multi-purpose RIA server-side solution 5/7

What are the advantages of an open API?
• development of other GUIs

• integration with other tools

• scriptability and automation

• easier to develop clients with different capabilities

A multi-purpose RIA server-side solution 6/7

Two clients that use the same server services (request)

RIA OpenLaszlo command-line Curl

A multi-purpose RIA server-side solution 7/7

Two clients that use the same server services (response)

RIA OpenLaszlo command-line Curl

Implications for the client-side 1/9

 usability suffers from latency

 individual steps and panes aren’t implicitly accessible
through a dedicated URL

 client-side performance is limited

 create alternate printable views

User Browser Server

network

barrier

Implications for the client-side 2/9

Network latency was not a real problem before
• traditional web applications have a render step at each action

• occasional slowness accepted because the entire page is refreshed

• the applications don’t resemble desktop applications

submit form send request

send responseshow new page

User Application Server

network

barrier

Implications for the client-side 3/9

For RIAs, network latency can give the impression of
a sluggish application
• only modified parts of the interface are updated

• fine-grained actions (like drag & drop) should respond instantly

• desktop applications respond immediately and RIA resemble them

drop list item call moveItem

send responseshow updated list

User ServerApplication

network

barrier

Implications for the client-side 4/9

The solution is to update the internal application model
and asynchronously send a request to the server

drop list item

update list model

show updated list

call moveItem

send response
[if !success]

show error

Implications for the client-side 5/9

Full render functionality is also needed
• your application panels aren’t

populated when the application is
first accessed after startup

• invisible views should not be
updated in the background for
performance reasons

• it’s still a web application, people
want to be able to access URLs to
retrieve information directly

Implications for the client-side 6/9

Development is more complex for the GUI of RIAs
• fine-grained incremental UI and model updates need to be supported

• complete UI render steps of the same information is needed too

Implications for the client-side 7/9

Be careful about the logic you move to the client side
• Flash’s garbage collector has trouble with lots of small objects

• OpenLaszlo’s JavaScript implementation isn’t fully Ecma compliant

• Flash executes byte-code slowly

• OpenLaszlo’s JavaScript can be up to 400 times slower than the
JavaScript interpreter of your browser

Solutions
• deploying for Flash version 7 and 8 improve performance a lot

• OpenLaszlo v3 let’s you communicate with browser JavaScript
through its LzBrowser.loadJS method and benefit from the
speed increase and complete Ecmascript functionalities

Implications for the client-side 8/9

OpenLaszlo has no native printing support
• relies on the print functionality of the browser

• non visible elements can’t be printed

• impossible to make a print-version layout

Solution
• create printer-specific regular XHTML pages

• provide links to these pages from the RIA UI where the print
functionality should be available

• the REST XML output makes it possible to use templating and
transformation solutions like XSLT to layout the data without
having to re-implement the back-end logic

Implications for the client-side 9/9

Example of printing support

Maintainable RIA applications 1/3

 traditional web applications typically have a separate
entry point for each application page

 RIA typically have one main entrance that loads the
entire application
• panel switches happen immediately without complete page reloads

• similar to desktop applications and welcomed by users

• as the application becomes larger, more actions are needed to
get to the location where development happens after a
recompilation

• problematic for developers

Maintainable RIA applications 2/3

OpenLaszlo’s modularization to the rescue
• put each component, screen, panel or module in the application

into a library:

• create a main wrapper canvas for each such library

helloworld.lzx

<library>
 <window x="20" y="20" width="200" height="250"
 title="Hello Window" resizable="true">
 <text>Hello World.</text>
 </window>
</library>

helloworld_wrapper.lzx

<canvas width="100%" height="100%">
 <include href="helloworld.lzx"/>
</canvas>

Maintainable RIA applications 3/3

Benefits
• each wrapper can be accessed individually to focus on the

development of that particular library

• initialization variables can be setup in the wrapper to test different
situations or to setup a context

• all libraries can be included in the main canvas and used to create
the full-blown application

• every part of the application is already modularized and ready for
when dynamic libraries are needed

Audience Response

Questions?

