
The Server-side Architecture
Behind OpenLaszlo Applications

Geert Bevin
gbevin@uwyn.com
http://www.uwyn.com
http://www.rifers.org

Agenda

 What are Rich Internet Applications?

 Why use OpenLaszlo?

 Architecture comparison with regular web MVC

 Designing a multi-purpose RIA server-side solution

 Implications for the client-side

 Making your RIA applications maintainable

 Q&A

Who am I?

 Geert Bevin

 CEO of Uwyn, a small custom application development
company (http://uwyn.com)

 founder of the RIFE Java web application framework
(http://rifers.org)

 official contributor to OpenLaszlo

 creator of Bla-bla List, open-source RIA to-do list
tracker in OpenLaszlo (http://blablalist.com)

What are Rich Internet Applications?

 full-featured web-based interactive GUI applications

 launch without any installation

 run in a secure sandbox to protect the local machine

 information is stored on the server

 the application can be used from anywhere

 platform independent

Examples

Amazon Store
This RIA interpretation of an Amazon music store

demonstrates presenting a range of functionality all in one
window, drag & drop between windows, a dynamic

shopping cart, and more, including pulling live data from
Amazon's back-end database.

http://www.laszlosystems.com/partners/support/demos/

Examples

Bla-bla List
Bla-bla List is a free, secure, simple and sharable to-do list

service. It’s open-source and written to explore the world
of rich internet applications. The first implementation uses

OpenLaszlo, and the plan is to implement the same features
in other RIA technologies

http://www.blablalist.com

Examples

Pandora
Pandora is an intelligent radio station that automatically

suggests the songs that are played according to your
musical preference and taste.

http://www.pandora.com

Why use OpenLaszlo?

 open-source, stable and well-documented

 runtime-independent development platform

 powerful object-oriented component-based language

 extends the RIA focus to multi-media capabilities

 currently targets Flash which has 97% market
penetration

 no browser compatibility hell

Comparison with regular web MVC 1/5

MVC stands for model-view-controller

standard pattern for separating concerns in a data-driven GUI application

User

Controllertriggers an event updates the model

Model

updated view
is displayed updates the view

View

updates the view

Comparison with regular web MVC 2/5
Server-side web MVC puts all the burden on the server with only primitive
interaction possibilities in the client.

 each client interaction makes the server view generate instructions for the
client’s view: the HTML document that the browser interprets.

 the client’s controller doesn’t interact with the server controller directly: the
browser handles input event which are summarized in HTTP requests.

ServerClient

User
Controller Controller

Model

ViewView

Client Server

Model

Controller

View

Controller

View

User

Comparison with regular web MVC 3/5
This architecture has been extended with more intelligent features like
client-side validation, at the expense of adding more complexity.

 the client needs to receive parts of the model to be able to perform the more
interactive functionalities

 the client will contain logic to be able to work with the model parts it received

Model

Client Server

Model

ControllerController

View

User

Model

Comparison with regular web MVC 4/5
Rich Internet Applications are able to handle all view-related functionalities,
which eliminates the need for the server-side view.

 the client has become thick and is able to provide a rich user-interface
experience

 the server contains only the core logic that is driven by the controller, parts of
the model are provided to the client

Comparison with regular web MVC 5/5
Overview of the architectural shift from server-side web MVC towards RIA.

 double view handling
 complete request/response cycle
 limited client functionalities
 heavy burden on server

 single view at the client
 targeted request/response cycle
 rich client functionalities
 thick client and light server load

Client Server

Model

ControllerController

View

User

Model

Server

Model

Controller

View

Client

Controller

View

User

A multi-purpose RIA server-side solution 1/7

 turn the server into an generic API

 provide RESTful web-services

 open up the application for other clients

A multi-purpose RIA server-side solution 2/7

What are RESTful web-services?
• standard HTTP requests with clean URLs and parameters

• use the POST method for modifications

• use the GET method for idempotent actions

• responses are XML representations of the model

A multi-purpose RIA server-side solution 3/7

RESTful web-service POST example
example request to create a new to-do list while being logged in

example XML response

http://blablalist.com/createlist

POST parameters:
authid	
 	
 	
 622c895dec2d96cf127f0d557785d200
submission	
 	
 create
name	
 	
 	
 My new list

<create authid="622c895dec2d96cf127f0d557785d200">
 <success id="37"/>
</create>

A multi-purpose RIA server-side solution 4/7

RESTful web-service GET example
example request to get the info of a to-do list while being logged in

example XML response

http://blablalist.com/getlist?
 authid=622c895dec2d96cf127f0d557785d200&
 id=23

<list authid="622c895dec2d96cf127f0d557785d200"
 id="23" name="Things I need to do this weekend" shortname="this_weekend"
 public="true" listurl="http://blablalist.com/list/johnsmith/this_weekend"
 feedurl="http://blablalist.com/feed/johnsmith/this_weekend"
 printurl="http://blablalist.com/printablelist?id=23"
 privateshares="1"
 count="2" isowner="true">
 <description>It's really time that I finally get all this done!</description>

 <entry id="140" name="Fix the electricity" done="false" priority="0"/>
 <entry id="141" name="Put in the new lightbulbs" done="false" priority="1"/>
 <entry id="142" name="Wash the car" done="true" priority="2"/>
</list>

A multi-purpose RIA server-side solution 5/7

What are the advantages of an open API?
• development of other GUIs

• integration with other tools

• scriptability and automation

• easier to develop clients with different capabilities

A multi-purpose RIA server-side solution 6/7

Two clients that use the same server services (request)

RIA OpenLaszlo command-line Curl

A multi-purpose RIA server-side solution 7/7

Two clients that use the same server services (response)

RIA OpenLaszlo command-line Curl

Implications for the client-side 1/9

 usability suffers from latency

 individual steps and panes aren’t implicitly accessible
through a dedicated URL

 client-side performance is limited

 create alternate printable views

User Browser Server

network

barrier

Implications for the client-side 2/9

Network latency was not a real problem before
• traditional web applications have a render step at each action

• occasional slowness accepted because the entire page is refreshed

• the applications don’t resemble desktop applications

submit form send request

send responseshow new page

User Application Server

network

barrier

Implications for the client-side 3/9

For RIAs, network latency can give the impression of
a sluggish application
• only modified parts of the interface are updated

• fine-grained actions (like drag & drop) should respond instantly

• desktop applications respond immediately and RIA resemble them

drop list item call moveItem

send responseshow updated list

User ServerApplication

network

barrier

Implications for the client-side 4/9

The solution is to update the internal application model
and asynchronously send a request to the server

drop list item

update list model

show updated list

call moveItem

send response
[if !success]

show error

Implications for the client-side 5/9

Full render functionality is also needed
• your application panels aren’t

populated when the application is
first accessed after startup

• invisible views should not be
updated in the background for
performance reasons

• it’s still a web application, people
want to be able to access URLs to
retrieve information directly

Implications for the client-side 6/9

Development is more complex for the GUI of RIAs
• fine-grained incremental UI and model updates need to be supported

• complete UI render steps of the same information is needed too

Implications for the client-side 7/9

Be careful about the logic you move to the client side
• Flash’s garbage collector has trouble with lots of small objects

• OpenLaszlo’s JavaScript implementation isn’t fully Ecma compliant

• Flash executes byte-code slowly

• OpenLaszlo’s JavaScript can be up to 400 times slower than the
JavaScript interpreter of your browser

Solutions
• deploying for Flash version 7 and 8 improve performance a lot

• OpenLaszlo v3 let’s you communicate with browser JavaScript
through its LzBrowser.loadJS method and benefit from the
speed increase and complete Ecmascript functionalities

Implications for the client-side 8/9

OpenLaszlo has no native printing support
• relies on the print functionality of the browser

• non visible elements can’t be printed

• impossible to make a print-version layout

Solution
• create printer-specific regular XHTML pages

• provide links to these pages from the RIA UI where the print
functionality should be available

• the REST XML output makes it possible to use templating and
transformation solutions like XSLT to layout the data without
having to re-implement the back-end logic

Implications for the client-side 9/9

Example of printing support

Maintainable RIA applications 1/3

 traditional web applications typically have a separate
entry point for each application page

 RIA typically have one main entrance that loads the
entire application
• panel switches happen immediately without complete page reloads

• similar to desktop applications and welcomed by users

• as the application becomes larger, more actions are needed to
get to the location where development happens after a
recompilation

• problematic for developers

Maintainable RIA applications 2/3

OpenLaszlo’s modularization to the rescue
• put each component, screen, panel or module in the application

into a library:

• create a main wrapper canvas for each such library

helloworld.lzx

<library>
 <window x="20" y="20" width="200" height="250"
 title="Hello Window" resizable="true">
 <text>Hello World.</text>
 </window>
</library>

helloworld_wrapper.lzx

<canvas width="100%" height="100%">
 <include href="helloworld.lzx"/>
</canvas>

Maintainable RIA applications 3/3

Benefits
• each wrapper can be accessed individually to focus on the

development of that particular library

• initialization variables can be setup in the wrapper to test different
situations or to setup a context

• all libraries can be included in the main canvas and used to create
the full-blown application

• every part of the application is already modularized and ready for
when dynamic libraries are needed

Audience Response

Questions?

